Nonlinear phase interaction between nonstationary signals: a comparison study of methods based on Hilbert-Huang and Fourier transforms.
نویسندگان
چکیده
Phase interactions among signals of physical and physiological systems can provide useful information about the underlying control mechanisms of the systems. Physical and biological recordings are often noisy and exhibit nonstationarities that can affect the estimation of phase interactions. We systematically studied effects of nonstationarities on two phase analyses including (i) the widely used transfer function analysis (TFA) that is based on Fourier decomposition and (ii) the recently proposed multimodal pressure flow (MMPF) analysis that is based on Hilbert-Huang transform (HHT)-an advanced nonlinear decomposition algorithm. We considered three types of nonstationarities that are often presented in physical and physiological signals: (i) missing segments of data, (ii) linear and step-function trends embedded in data, and (iii) multiple chaotic oscillatory components at different frequencies in data. By generating two coupled oscillatory signals with an assigned phase shift, we quantify the change in the estimated phase shift after imposing artificial nonstationarities into the oscillatory signals. We found that all three types of nonstationarities affect the performances of the Fourier-based and the HHT-based phase analyses, introducing bias and random errors in the estimation of the phase shift between two oscillatory signals. We also provided examples of nonstationarities in real physiological data (cerebral blood flow and blood pressure) and showed how nonstationarities can complicate result interpretation. Furthermore, we propose certain strategies that can be implemented in the TFA and the MMPF methods to reduce the effects of nonstationarities, thus improving the performances of the two methods.
منابع مشابه
Nonlinear and Non-stationary Vibration Analysis for Mechanical Fault Detection by Using EMD-FFT Method
The Hilbert-Huang transform (HHT) is a powerful method for nonlinear and non-stationary vibrations analysis. This approach consists of two basic parts of empirical mode decomposition (EMD) and Hilbert spectral analysis (HSA). To achieve the reliable results, Bedrosian and Nuttall theorems should be satisfied. Otherwise, the phase and amplitude functions are mixed together and consequently, the ...
متن کامل○E The Hilbert–Huang Transform: A High Resolution Spectral Method for Nonlinear and Nonstationary Time Series
The Fourier transform remains one of the most popular spectral methods in time-series analysis, so much so that the word “spectrum” is virtually equivalent to “Fourier spectrum” (Huang et al., 2001). This method assumes that a time series extends from positive to negative infinity (stationarity) and consists of a linear superposition of sinusoids (linearity). However, geophysical signals are ne...
متن کاملThe Hilbert–Huang Transform: A High Resolution Spectral Method for Nonlinear and Nonstationary Time Series
The Fourier transform remains one of the most popular spectral methods in time-series analysis, so much so that the word “spectrum” is virtually equivalent to “Fourier spectrum” (Huang et al., 2001). This method assumes that a time series extends from positive to negative infinity (stationarity) and consists of a linear superposition of sinusoids (linearity). However, geophysical signals are ne...
متن کاملSliding Window Empirical Mode Decomposition -its performance and quality
Correspondence: [email protected] Nalecz Institute of Biocybernetics and Biomedical Engineering PAS, Warsaw, Poland Abstract Background: In analysis of nonstationary nonlinear signals the classical notion of frequency is meaningless. Instead one may use Instantaneous Frequency (IF) that can be interpreted as the frequency of a sine wave which locally fits the signal. IF is meaningful for mon...
متن کاملIllumination Invariant Face Recognition based on the New Phase Local Features
Hilbert-Huang transform (HHT) is a novel signal processing method which can efficiently handle nonstationary and nonlinear signals. It contains two key parts: Empirical Mode Decomposition (EMD) and Hilbert transform. EMD decomposes signals into a complete series of Intrinsic Mode Functions (IMFs), which capture the intrinsic frequency components of original signals. Hilbert transform is adopted...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 79 6 Pt 1 شماره
صفحات -
تاریخ انتشار 2009